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Abstract: Zinc absorption in the small intestine is one of the main mechanisms regulating the
systemic homeostasis of this essential trace element. This review summarizes the key aspects of
human zinc homeostasis and distribution. In particular, current knowledge on human intestinal
zinc absorption and the influence of diet-derived factors on bioaccessibility and bioavailability
as well as intrinsic luminal and basolateral factors with an impact on zinc uptake are discussed.
Their investigation is increasingly performed using in vitro cellular intestinal models, which are
continually being refined and keep gaining importance for studying zinc uptake and transport via
the human intestinal epithelium. The vast majority of these models is based on the human intestinal
cell line Caco-2 in combination with other relevant components of the intestinal epithelium, such as
mucin-secreting goblet cells and in vitro digestion models, and applying improved compositions of
apical and basolateral media to mimic the in vivo situation as closely as possible. Particular emphasis
is placed on summarizing previous applications as well as key results of these models, comparing
their results to data obtained in humans, and discussing their advantages and limitations.

Keywords: zinc; intestinal absorption; zinc homeostasis; zinc bioavailability; zinc uptake; in vitro
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1. Introduction

The essential trace element zinc plays a key role for several important biological processes in the
human body [1]. To compensate the endogenous zinc loss and maintain a healthy zinc homeostasis,
this micronutrient has to be supplied with food on a daily basis [2]. Human body zinc homeostasis is
predominantly regulated by its intestinal absorption [3]. In this process, zinc transporters on the apical
and basolateral membrane of enterocytes are engaged and regulate cellular and body zinc homeostasis
together with the cellular zinc-binding protein metallothionein [4,5]. Despite this knowledge and
ongoing research, a deeper understanding of the molecular processes regulating zinc absorption via
the intestinal epithelium is still scarce. Zinc absorption does not only depend on an adequate dietary
intake, but is also greatly affected by its intestinal availability from the diet. To further illuminate the
impact of these factors on zinc absorption by the intestinal epithelium remains one of the determining
topics in research [6,7]. Herein, in vivo human studies using (stable) isotope techniques are still the
gold standard [8]. During the past 50 years, attempts to establish suitable three-dimensional in vitro
cell culture models to mimic in vivo processes have gained more attention. This is mainly due to
high costs and ethical standards of animal studies and the benefits of in vitro models providing a
microenvironment that advances studies of cellular processes on a molecular level [9,10].
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This review aims to provide an overview of the current knowledge on human intestinal zinc
absorption, including the major cellular processes and nutritional aspects. In addition, the scope of
this review is to illustrate analytical approaches that have been applied to characterize human zinc
absorption, particularly the achievements and advantages of in vitro cellular intestinal models to
investigate molecular regulatory parameters and transport kinetics of human zinc absorption as well
as the bioavailability of this micronutrient from food.

2. Zinc Homeostasis and Its Role in Human Health

Zinc is the second most abundant micronutrient in the human body after iron [11,12]. Based on
bioinformatics research, approximately 2800 human proteins are presumed to bind zinc [13], potentially
requiring the divalent cation for catalytic, structural, and regulatory functions [5,13]. Hereby, zinc
is crucial for gene expression, is needed for the activity of several metalloenzymes, and provides a
major structural component in zinc fingers and zinc finger-containing domains [14,15]. Consequently,
zinc is essential for various cellular processes such as differentiation, apoptosis, and proliferation,
which influences growth and development of an organism [16]. Moreover, in the past two decades,
the knowledge about its importance as a signaling molecule increased [17], particularly in the immune
system and as a neuro-modulator in synaptic vesicles [18]. To fulfill this multiplicity of functions, zinc
needs to be properly distributed into all compartments of the human body, and the differences in zinc
content between various organs (Figure 1, left hand side, calculation and references in Supplementary
Table S1) highlights the existence of a complex homeostasis ensuring proper allocation. The adult
human body contains approximately 2.6 g of zinc. The largest fraction is localized in bone and skeletal
muscle (~86%), followed by skin (4.2%), and liver (3.4%). It has to be noted that some zinc-containing
entities, such as the thymus and mucous membranes, are not included in the calculation, so the actual
total zinc content of the human body is higher than the 2.6 g estimated in Figure 1. Moreover, according
to Jackson et al., validity of such calculations is limited since they are mostly based on zinc content
from biopsies and sections of tissues assuming that this reflects the total zinc content of the respective
live tissue [19].
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Figure 1. Overview of zinc distribution and disease association in the human body. (A) Approximate
zinc content (µg per g wet weight) of the respective tissues and the resulting proportion of total body
zinc. Detailed estimation of the tissues’ zinc content and references are depicted in Supplementary
Table S1. (B) Diseases of the respective organ systems associated with imbalanced zinc homeostasis.
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Plasma or serum zinc levels in healthy individuals vary from 12 to 16 µM [20–22], which
corresponds to less than 1% of whole-body zinc. It is mainly bound to albumin (60%), α-macroglobulin
(30%), and transferrin (10%) [23], which leaves only a sub-nanomolar concentration of free zinc [24–27].
Still, serum represents a rapidly exchangeable zinc pool of high importance for distributing zinc within
the body. In contrast, skeletal muscle and bone comprise zinc with a lower turnover and slower
availability for systemic zinc homoeostasis [28].

The importance of zinc homeostasis is highlighted by the remarkable number of diseases associated
with alterations in tissue zinc levels, which is summarized in Figure 1 (right hand side). As there
is no dedicated compartment for zinc storage in the human body, zinc has to be continuously
replenished by dietary intake [2], replacing intestinal and non-intestinal losses of endogenous zinc [16,
29]. Based on several human studies, these losses include fecal zinc excretions and excretions with
urine, sweat, menstrual flow, and semen (for adults) as well as loss of hair, nails, and desquamated
skin [30]. To this end, currently, human requirements are mostly estimated using a factorial approach
considering the overall zinc losses including additional physiological requirements during pregnancies,
lactation, or early infancy, as well as the bioavailability of the mineral from the diet [29,30]. Table S2
depicts daily recommendations for dietary zinc intake from different governmental agencies and
non-governmental organizations.

The main regulatory mechanisms for human zinc homeostasis are absorption and excretion [3],
and the small intestine, pancreas, and liver play central roles in its maintenance [3]. Endogenous
zinc is continuously excreted into the intestinal lumen, from which parts are reabsorbed [3], while
the remainder, varying between 0.8 and 2.7 mg zinc/d, is excreted with feces [31–34]. Thus, the close
interplay of absorption of exogenous zinc as well as the excretion and reabsorption of endogenous
zinc provides a stable balance of body zinc homeostasis. The latter is maintained over a wide range
of exogenous zinc intakes [3,35–38]. In zinc-deficient states, fecal and urinal zinc losses are rapidly
decreasing [31,39,40]. Only when these mechanisms fail to sustain zinc-requiring processes, plasma
zinc declines [35,40]. This is followed by a reduction of the less exchangeable zinc from tissues such as
liver, testes, and bones [5,41]. Consequently, the plasma zinc level itself is not a reliable biomarker for
body zinc status [5,27], especially since it also changes during inflammation [42] in response to stress
or even after a meal [5].

Inadequacy of the zinc status can be connected to insufficient food supply, but mostly results from
poor bioavailability from the consumed diet [36]. Zinc deficiency has high prevalence in developing or
poor countries [43,44]. Yet, vegans [45], vegetarians [45], elderly [30,44], and people with disorders
connected to a diminished zinc absorption, such as acrodermatitis enteropathica or celiac disease [46]
as well as diseases that cause increased zinc loss, such as inflammatory bowel diseases [47,48],
are also susceptible.

According to the World Health Organization (WHO), one-third of the world’s population are at
risk for zinc deficiency [49]. The lack of a suitable biomarker for physiological zinc status, and, thus,
a low possibility to recognize insufficient zinc absorption, particularly in the early stages of a mild
zinc deficiency, is a major obstacle in this situation [16,50]. An imbalanced zinc status or deficiency
of this micronutrient is associated with severe health consequences (Figure 1), which causes high
morbidity. Zinc excess, on the other hand, is mainly associated with disturbed copper homeostasis
(reviewed in detail in Reference [16]). Symptoms of zinc deficiency are reversible [16,51–53]. In most
cases, zinc supplementation in addition to dietary zinc provides a convenient option to compensate for
inadequate zinc intake, malabsorption, or increased zinc loss due to intestinal diseases [54–56].

3. Zinc Absorption

Zinc is absorbed throughout the whole small intestine [57,58], but the major site of intestinal zinc
absorption in humans remains controversial. In rats, the highest absorption rate is reported either in
the duodenum and ileum [59–61], or only in the ileum [62] or jejunum [58,63], respectively. In vivo
studies investigating the actual site of zinc absorption in humans are scarce. However, using small
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intestine perfusion techniques in healthy individuals, the major absorption sites in human intestines
are found to be both the duodenum [64] and jejunum [58].

Zinc uptake takes place at the intestinal brush border membrane, where it is transported from
the lumen into absorptive cells of the epithelium: the enterocytes. The subsequent excretion of the
cation at the basolateral side of enterocytes releases it into the portal blood, where it is predominantly
bound to albumin, which distributes the metal in the body [3,65]. While several in vitro studies show
transport from the basolateral to the luminal site of the intestinal epithelium [66–68], this has not been
observed in humans so far [69]. Additionally, only a rather low apical zinc secretion into the lumen is
reported in vivo using perfused rat intestines and physiological serum zinc concentrations [70].

Zinc absorption kinetics are described by carrier-mediated and saturable processes [58,69,71,72],
whereby zinc uptake at the apical membrane of the intestinal mucosa seems to be the rate limiting
step [70]. Saturation of these transport mechanisms at a certain luminal zinc level is reflected by an
absorption plateau with a half saturation constant (Km) of cellular zinc uptake in vivo of 29–55 µM
zinc [38,70,73]. However, at higher luminal zinc concentrations, zinc uptake becomes non-saturable,
which indicates passive diffusion [3,57,71]. Notably, the ‘high zinc concentrations’ applied in these
studies varied from >200–1000 µM [57,71,72]. This might not be relevant in vivo for normal zinc intake,
as physiologically relevant concentrations in the intestinal lumen after consumption of a standard meal
vary around 100 µM [58,64,74] for which a saturable and carrier-mediated transport kinetic applies
both in in vitro and in vivo studies.

Fractional absorption of dietary zinc in humans is typically in the range of 16–50% [7,30,33,75–77],
which is inversely related to oral zinc intake [36]. Moreover, net absorption is regulated by body zinc
homeostasis and, thus, depend on the individual zinc status adapting to prolonged low zinc diets.
Consequently, zinc-deficient humans and animals show increased fractional zinc absorption [34,78–80],
absorbing up to 92% of dietary zinc [34,80]. Accordingly, human zinc absorption is more efficient
from low zinc diets [7]. Zinc absorption is also affected by the form in which it is administered.
Net absorption is higher from orally administered aqueous zinc solutions than the absorption of the
same amount of zinc included in a meal [57], mainly because absorption of the mineral depends on its
bioavailability in the intestinal lumen, which will be discussed in detail in Section 4.1.

3.1. Intestinal Zinc Transporters

Intestinal zinc absorption is mainly mediated by the Zrt-, Irt-like protein (ZIP)4 (solute carrier
(SLC)39A4), which imports ionic zinc from the lumen into enterocytes [81,82], and ZnT-1 (SLC30A1),
which is a basolateral membrane protein exporting zinc on the basolateral side of enterocytes into
the portal blood [83] (Figure 2). The basolaterally localized transporters ZIP5 (SLC39A5) and ZIP14
(SLC39A14) complement these two transporters by importing zinc from the blood circulation into
enterocytes [84,85]. Moreover, ZnT-5 variant B (SLC30A5B) is localized at the apical membrane
of enterocytes [74,86] and functions in a bidirectional manner, transporting both luminal zinc into
enterocytes and cellular ions back into the lumen [86,87]. Hence, this suggests that the previously
mentioned apical secretion of the mineral could possibly represent an additional regulatory mechanism
of cellular and body zinc homeostasis [87,88].

Earlier findings indicated involvement of the divalent metal transporter (DMT)-1, which is a
cation transporter of low selectivity, in intestinal zinc uptake [89]. The identification of ZIP4 as the
major transporter for zinc uptake and contradictory results in several in vitro studies [90–94], however,
challenge the role of DMT-1 in physiological zinc transport.

Even though the exact transport mechanisms of ZIPs and ZnTs are not yet fully elucidated,
it is known that these proteins transport ionic zinc [14,95]. Dietary zinc in the intestinal lumen,
however, is mainly complexed by food components influencing the actual available and absorbable
zinc concentration. In addition to the uptake of the ionic form, zinc is also suggested to be absorbed in
complex with certain amino acids by possibly utilizing another transport pathway than ionic zinc [96].
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3.2. Enterocyte Zinc Homeostasis and Regulation of Intestinal Zinc Absorption

Cellular zinc homeostasis comprises three main zinc pools: zinc bound to proteins, stored in
vesicles, and cytoplasmic free zinc (Figure 2A). The latter is only complexed by small molecule
ligands [97] and considered to be the biologically active form of the ion [98]. This mobile zinc species
is either in transit through the cell, being “re-distributed,” or serves as a signaling molecule [99].
Therefore, the cytoplasmic-free zinc concentration has to be tightly regulated [98] and is buffered to a
picomolar level [97], being either transported out of the cell and sequestered into vesicles via ZIP and
ZnT transporters, or bound to proteins such as metallothioneins (MTs) [99] (Figure 2A,B). Hence, MTs
and zinc transporters represent an elaborate zinc buffering and muffling system [100].

Detailed processes of cellular distribution of zinc into enterocytes and its transfer through the cells
after its absorption are not yet completely understood. Examinations of free zinc (pools) in enterocytes
in vitro with the eCalwy biosensor [101] and the fluorescent zinc probe Zinpyr-1 [102,103] document
that enterocytes contain at least two different free zinc pools that are involved in the maintenance of zinc
homeostasis during zinc absorption: cytoplasmic-free zinc and vesicular zinc [101–103]. Nevertheless,
these processes have to be further scrutinized. In particular, the chronology of the zinc transfer through
the enterocytes upon its absorption and its subsequent basolateral release into the blood circulation
needs to be unraveled in more detail.
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Figure 2. Enterocyte zinc homeostasis. (A) Zinc homeostasis in enterocytes during zinc absorption.
Three main zinc pools in enterocytes have been described: (i) cytoplasmic-free zinc, which is only
complexed by low molecular weight ligands, (ii) protein-bound zinc, depicted here as metallothionein
(MT)-bound zinc, and (iii) free zinc stored in vesicles [104]. The vesicular [102,103] and cytoplasmic-free
zinc pools [101] are recognized to be involved in zinc absorption by enterocytes [105]. Cellular zinc
homeostasis is maintained by three main groups of proteins: the zinc transporter (ZnT)-and the
Zrt-, Irt-like protein (ZIP)-family as well as the zinc-binding metallothioneins [99]. They regulate the
cytoplasmic-free zinc concentration and provide its distribution into organelles and vesicles. Exporters
of zinc from vesicular stores in enterocytes remain to be identified and transfer of the divalent cation
through the enterocytes after its uptake by the cells (illustrated by red arrows) is not yet fully understood.
(B) Zinc buffering and muffling role of metallothioneins (MTs). MTs and other ligands (such as proteins)
bind free zinc and, thereby, buffer its cytoplasmic concentration. In addition to zinc transporters, MTs
represent zinc muffling moieties, which decrease free zinc content in the cytoplasm by transferring the
cation to transporters, sequestering it into organelles, vesicles, or outside the cell. Notably, free zinc
itself can also be transported into organelles, whereby, in this process, the ZnT solely undertakes the
muffling [100]. Moreover, MTs re-distribute intracellular zinc by transferring it to other ligands, such
as metalloproteins [106]. This zinc transfer may be enforced by a redox-active mechanism in which
the apo-protein Thionein (Tred) binds the cation, which results in its metal-loaded form, MT, which
releases zinc upon its oxidation to Thionin (Tox) (reviewed in Reference [107]).



Nutrients 2020, 12, 762 6 of 43

The discovery of intestinal zinc transporters and elucidation of the role of zinc-binding MTs in
maintaining enterocyte zinc homeostasis contributed to an increased understanding of regulatory
parameters of intestinal zinc absorption. Furthermore, the current knowledge about their regulatory
role during this process will be briefly summarized. There are four known MT genes (MT-1–MT-4)
encoding eleven functional human MT-isoforms [108,109]. In the intestine, mainly MT-1 and MT-2
are expressed [109]. The singular form “MT” refers to both MT-isoforms for the sake of convenience
and readability. Similar to its role in cellular zinc homeostasis in general, MT plays an important role
in regulating enterocyte zinc homeostasis by binding zinc that is absorbed into the cells [70]. Thus,
the protein controls free levels of the cation and is discussed to mediate zinc trafficking through the cell
as well as its transfer to other proteins such as zinc transporters (Figure 3) [108,110]. Hence, MT’s zinc
buffering and muffling properties might regulate the amount of zinc that is exported into the portal
blood and distributed in the body.

Expression of MT is related to changes in enterocyte zinc levels. Elevated cellular free zinc itself
induces mt expression via the metal regulatory transcription factor 1 (MTF-1) [111]. Protein and
messenger ribonucleic acid (mRNA) levels of intestinal MT increase the response to elevated dietary
zinc in animals and humans in vivo [86,112–114], acting as an initial defense mechanism against
high luminal zinc concentrations [114], whereas, in zinc-deficient states, MT protein and mRNA
are decreasing [86,112–114]. Furthermore, MT upregulation appears to affect zinc transport kinetics
and decreases luminal zinc absorption [71,115–117], which leads to decreased serum and body zinc
levels in response to elevated intestinal MT [116,118,119]. In an earlier study, MT was also suggested
to be involved in zinc export from enterocytes back into the intestinal lumen [117]. Furthermore,
luminal secretion of MT after treatment with physiological zinc concentrations was observed in a
three-dimensional in vitro intestinal cell model, indicating that MT might also mediate enterocyte
zinc homeostasis by apically sequestering excess zinc [120]. The relevance of MTs for zinc trafficking,
however, seems to be limited, as MT knockout mice (for MT-1 and-2 genes) are more sensitive to
additional dietary zinc, but still viable and reproductive [118,121]. Furthermore, experimental modeling
of MTs as mufflers indicated that they are possibly not the only proteins mediating zinc transfer to
transporters [122]. These findings imply that there must be other proteins maintaining zinc trafficking
through the cell. Accordingly, Cousins and coworkers proposed the involvement of the cysteine-rich
intestinal protein (CRIP) as an additional mediator of enterocyte zinc trafficking, which may compete
with MT [123]. Yet, CRIP was later shown to be expressed in nearly all organs and suggested to play a
role in the immune response [124]. More likely is the existence of another moiety in zinc muffling and
transfer through the cell, possibly similar to metallochaperones involved in enterocyte iron and copper
homeostasis [125].

Similar to MT, intestinal zinc transporters are not only required for the maintenance of enterocyte
zinc homeostasis, but are also decisive for zinc absorption (Figure 3). The main intestinal zinc
importer ZIP4 is essential for zinc absorption. This is demonstrated by the zinc malabsorption
disease acrodermatitis enteropathica, originating from different mutations in the gene encoding
human ZIP4 [81,82,126,127]. ZIP4 is regulated by dietary zinc in a transcriptional, translational,
and post-translational manner [128]. Moreover, surface localization of enterocyte ZIP4 is regulated by
cytoplasmic zinc [129]. Under zinc deficiency, zip4 mRNA is stabilized [127,130,131] and the protein
accumulates at the apical plasma membrane result in elevated zinc uptake [129,132]. Zinc repletion
results in endocytosis of the protein [129], and ubiquitin-mediated degradation at even higher zinc
concentrations [133,134], while transcription remains unaltered [86].

In contrast to ZIP4, zip5 mRNA abundance is independent from dietary zinc, whereas its translation
is zinc-dependent [130]. During zinc insufficiency, its mRNA remains associated with polysomes
without being translated, while the basolateral plasma membrane protein is internalized, which
minimizes the secretion of body zinc from the blood into the intestinal tract [130,131]. Due to this
polysomal stalling mechanism, the protein is again rapidly expressed and accumulates at the membrane
after zinc repletion [130]. Consequently, ZIP5 is important for the control of systemic zinc homeostasis
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and is considered to be involved in sensing the zinc body status [135]. Regulation of zip14 mRNA,
on the other hand, was not altered during dietary zinc deficiency or excess in mice [136].

Znt-1 mRNA expression is zinc-dependent and, similar to MT, regulated by MTF-1 [83,137].
MTF-1 directly senses cytoplasmic zinc concentrations in enterocytes and regulates ZnT-1 expression,
which ensures sufficient capacities for export of the cation into the portal blood and controls intracellular
zinc-free levels [108]. Furthermore, aside of its transcriptional regulation, the zinc-regulated surface
accumulation of ZnT-1 might also be facilitated on a post-transcriptional level, whereas, during zinc
deficiency, the protein is degraded via lysosomal and proteasomal pathways [138]. Nevertheless,
in vivo data for basolateral ZnT-1 during zinc excess and deficiency are contradictory and scarce
regarding its differential expression in humans. In animal studies, high oral zinc doses increase
protein [83] and mRNA expression [83,118,137]. Conversely, znt-1 mRNA and the corresponding
protein are downregulated after zinc supplementation in humans in vivo [86]. Zinc restriction, on the
other hand, leads to downregulation of mRNA and protein in weanling rats [139] but not in mature
rats [137]. In contrast to the previously mentioned MT knockout mice, ZnT-1 knockout mice already
die in an early embryonic state [140].

The apically localized bidirectional zinc transporter ZnT-5B is not affected by zinc deficiency,
but is downregulated [86] or upregulated [74,87] with elevated cellular zinc availability in in vitro and
in vivo studies. This converse regulation indicates a rather complex role in zinc homeostasis and was
suggested to be based on both transcriptional repression and stabilization of its mRNA [88]. Aside of
its apically located variant B, ZnT-5 is also distributed in cytoplasmic organelles of enterocytes and
goblet cells [141] and considered to be essential for zinc homeostasis, as ZnT-5 knockout mice display
impaired growth and bone development [142].

In addition to the zinc transporters at the apical and basolateral membranes of enterocytes, there
is evidence that ZnT-2, ZnT-4, ZnT-6, and ZnT-7 also regulate the cytoplasmic zinc concentration
in enterocytes. ZnT-2 is a vesicular zinc exporter [143] expressed in the human in vitro intestinal
cell line Caco-2 [144] as well as in rat [137,145] and mouse intestines [136]. There are two ZnT-2
isoforms expressed in the small intestine with different (sub-)cellular localization. Liuzzi et al.
detected a small isoform of ZnT-2 on vesicles close to the apical membrane in enterocytes of lactating
rats [145], whereas the larger isoform, also found in secretory vesicles in mammary epithelial cells,
seems to be restricted to mouse intestinal Paneth cells [146]. ZnT-4 is expressed in rat [137,145] and
murine small intestines [136,141], mainly located in the perinuclear region of murine absorptive
epithelial cells [141] and associated with endosomal vesicles predominantly accumulating in the
basolateral side of rat enterocytes [145,147]. In response to high zinc intake, both znt-2 and znt-4 are
upregulated [136,137], which might result in increased sequestration of zinc into vesicles, whereas their
mRNA is downregulated after zinc depletion [136]. ZnT-7 and ZnT-6 are also expressed in the small
intestine [141,148,149], but appear to be independent of the intracellular zinc concentration since their
mRNA abundance does not change in response to low and high zinc diets [136]. Both transporters are
detected in the cytoplasm of absorptive epithelia cells. Their subcellular localization in enterocytes,
however, remains unknown. However, both transporters are described to be associated with Golgi and
vesicular compartments in various cell types [148,149], which indicates that the trans Golgi network
could be involved in the cellular zinc transfer through enterocytes [141].
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Figure 3. Regulation of intestinal zinc absorption. Potential regulatory mechanisms of zinc absorption
into enterocytes during (A) zinc excess, (B) adequate supply, and (C) zinc deficiency, based on
experimental data on the zinc-dependent expression pattern of the intestinal zinc transporters (ZnT)
and the Zrt-, Irt-like protein (ZIP)-transporters as well as metallothioneins (MT). Enterocyte zinc
homeostasis is controlled by these proteins, regulating the amount of intestinally absorbed and
basolaterally exported zinc [150]. The subcellular localization of ZnT-5, ZnT-6, and ZnT-7 in enterocytes
is not yet fully investigated. Zinc-dependent up-regulation or downregulation of the respective protein
and/or messenger ribonucleic acid (mRNA) are indicated by red arrows.

4. Zinc in Nutrition and Its Intestinal Bioavailability

4.1. Intestinal Zinc Bioavailability

Zinc bioavailability from a mixed or vegetarian diet based on refined cereal grains is estimated to
be 26–34%, whereas 18–26% is absorbed from an unrefined cereal-based diet [30]. The actual amount
of absorbed zinc not only depends on the zinc content of the consumed diet (for a detailed summary
of zinc content of animal and plant-based foods, refer to Reference [30]), but is highly affected by its
intestinal zinc bioaccessibility and bioavailability. The term bioaccessibility in this context includes the
potentially free and absorbable zinc concentration in the intestinal lumen [151,152]. Bioavailability
describes the amount of zinc absorbed by the cells that is subsequently released into the blood and,
therefore, available for systemic circulation and body homeostasis [151].

Due to the digestion process, a wide range of different zinc species is present in the intestine,
complexed by food-derived macromolecules or low molecular weight ligands [3]. Hence, zinc
accessibility and availability depend on its solubility and stability of the respective complexes in the
intestinal lumen. This is affected by the diet as well as by physiological factors such as the mucus layer
and the intestinal fluid. Together, these luminal factors alter the speciation of the ion as well as its
luminal free and available concentration, which, consequently, affects its absorption by the intestinal
epithelium. Below, the beneficial or inhibitory impact of these diet-derived and physiological luminal
factors on intestinal zinc bioavailability as well as physiological basolateral factors will be briefly
summarized (Figure 4).
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Figure 4. Luminal and serosal factors recognized to influence zinc absorption. Food-derived
macromolecules and low molecular weight ligands positively or negatively influence the speciation of
the ion as well as its luminal free and available concentration, consequently affecting its absorption
by the intestinal epithelium [3]. Phytate forms stable complexes with zinc at intestinal pH, which
diminishes its availability for enterocytes [153]. Conversely, the protein content of the consumed food
has a positive effect on zinc absorption due to the release of amino acids and peptides upon degradation.
Presumably, these increase luminal solubility of the metal, and, consequently, enhance its availability to
enterocytes [154,155]. Serum albumin is an important serosal factor, acting as a basolateral zinc-acceptor
and enhancing enterocytic zinc release into the blood circulation [102]. Additionally, systemic humoral
factors, such as hepcidin, seem to influence ZnT-1-mediated export of zinc by intestinal cells [156],
which indicates that the liver might play an important role in secreting humoral factors regulating
intestinal zinc absorption.

4.2. Dietary Factors Recognized to Influence Zinc Absorption

Fractional zinc absorption preferentially depends on zinc intake, as its efficiency declines with
increased zinc consumption [7,8,32]. Additionally, the zinc species influences its intestinal absorption,
which is of particular relevance for zinc supplements (for details refer to Reference [30]).

Phytate, which is a natural component of plants, severely decreases intestinal zinc bioavailability
and is regarded as the main nutritional inhibitor of zinc absorption. Notably, the term phytate
includes magnesium, calcium, or potassium salts of phytic acid and comprises a mixture of
myo-inositol hexaphosphates, pentaphosphates, tetraphosphates, and triphosphates [153]. Actually,
tetraphosphates and triphosphates were described to have little impact on zinc absorption, whereas
inositol hexaphosphates and pentaphosphates severely impaired intestinal zinc availability in in vivo
studies [153,157,158]. Nevertheless, phytate can be hydrolyzed by phytase, which is an enzyme
that degrades the molecule to tetraphosphates and triphosphates, consequently increasing zinc
availability [159,160]. In contrast to sheep and pigs, which are able to degrade phytate with their
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own intestinal phytase, levels of this enzyme in human small intestine are very low and, thus,
phytate degradation is highly dependent on phytogenic and microbiotic phytase [153,159,161,162].
Phytogenic phytase, particularly in grains, can be activated during fermentation and food
processing [159,160,163], which, subsequently, enhances zinc absorption [163].

Zinc is bound by phosphates of phytate, yielding a 2:1 stoichiometry of the
zinc/phytate-complex [164] with strong binding affinities: 1.8 × 106 L mol−1 (site 1) and 8 × 104 L mol−1

(site 2) for myo-inositol hexaphosphate at 37 ◦C [165]. Moreover, stability of the zinc/phytate-complex is
pH-dependent, which illustrates moderate solubility at low pH and poor solubility at pH 7 [165]. Hence,
zinc does not even have to be complexed by phytate in the foodstuffs [166] because, at an intestinal pH
(luminal pH 6–7.4 [167]), phytate binds the cation effectively, and forms stable complexes with low
solubility and bioaccessibility [168,169]. Consequentially, complexed zinc is not available for absorption
and is excreted with the feces [170]. Phytate is also discussed to severely impact body zinc homeostasis
by binding endogenous zinc that is excreted into the lumen and inhibiting its reabsorption [3]. Thus,
the total phytate content of the diet affects the overall zinc bioavailability of a meal. Since the inhibitory
effect of phytate on zinc absorption is concentration-dependent, the molar phytate: zinc-ratio of the
diet (Table 1) is applied to estimate zinc bioavailability [49] and was shown to be more important
than the phytate content of the product itself [171,172]. In general, plant-based diets contain higher
phytate levels than mixed diets, which, consequentially, provides less intestinally-available zinc than
meat-based diets [45,173].

Significant changes in human zinc absorption are observed starting at a molar phytate: zinc-ratio
of 5. Fractional zinc absorption is reduced from 21% in the absence of phytate to 11–16% at a molar
ratio of 5–15, and even lower at 4–11% at molar ratios >15 [174]. Additionally, these complexes are
stronger in the presence of calcium, which suggests that calcium might aggravate the inhibition of
zinc absorption by phytate [174]. However, calcium does not increase the phytate-mediated inhibition
of zinc absorption in several human dietary studies [77,166,175]. Other than phytate, fibers such as
cellulose seem to have no significant impact on zinc absorption [160,170].

Table 1. Zinc and phytate content, as well as phytate: zinc-molar ratios of selected plant-based foods.

Food Group Food Zinc Content
(mg/100g)

Phytate Content
(mg/100g)

Phytate: Zinc
Molar Ratio Reference

Seeds and nuts Sesame seeds 2.48 1525 60.9 [176]
Beans and lentils Lentils 3.03–4.02 747–961 18.5–27.8 [177]

Whole grain cereals Durum wheat 2.4–4.8 460–952 16.9–23.6 [178]
Vegetables Sweet potato (boiled) 0.30 31–37 12.3–15.2 [179]

Fruit Passion fruit 0.41–0.48 77.2–86.8 15.3–20.6 [179]
Refined cereals Refined wheat flour 0.52 37 6.47 [180]

Phytate: Zinc-Molar ratio was estimated based on (mg phytate/660)/(mg zinc/65.4).

Dietary protein levels positively correlate with zinc uptake [77,154]. Human zinc absorption is
substantially higher in the presence of protein from animal sources than plant-based protein [181] and
the addition of animal protein to vegetable-based food significantly improved its zinc bioavailability
in vivo [182]. This beneficial impact, however, is discussed to be based on the fact that the amount of
protein itself counteracts the impairing effect of phytate and not because of its animal origin [183].

Protein is digested in the gastrointestinal tract and degraded into peptides or amino acids [184].
These low molecular weight compounds form complexes with zinc, which increases its bioavailability
by enhancing the solubility of the cation in the intestinal lumen [36] and possibly by being absorbed
via amino acid transporters [96]. This increases the relevance of zinc complexes with amino
acids for zinc supplementation in malabsorption diseases such as acrodermatitis enteropathica [96].
Several studies investigated the impact of amino acids on zinc absorption, yielding contradictory
results [76,155,185–188]. Hence, to date, it is not yet feasible to provide a general statement on the
effect of amino acids on zinc bioavailability.
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The interrelation between different micronutrients and their absorption is still subject to ongoing
research. The possible inhibitory impact of calcium on intestinal zinc bioavailability was already
discussed above. Furthermore, negative effects of both heme-iron and inorganic iron on zinc absorption
were reported by several in vivo studies [185,189–192], whereby the effect is greater when iron is
administered as aqueous solution than together with a meal [185,193]. Copper, on the other hand, has no
impact on zinc absorption [194]. In contrast, supra-physiological zinc doses critically impair intestinal
copper absorption [195]. Lastly, cadmium [196] and tin inhibit zinc absorption [197]. While the latter
study applied unrealistically high amounts of tin, naturally occurring tin concentrations seem to affect
zinc homeostasis by increasing its fecal excretion [198].

In contrast to its beneficial role in iron absorption [193], ascorbic acid has no effect on intestinal zinc
bioavailability [181,199,200] because zinc, unlike iron, does not need to change its oxidation state for
intestinal uptake. Citrate, on the other hand, positively influences zinc availability [201]. Citrate is the
main low-molecular weight ligand binding zinc in milk, which, possibly, influences zinc bioavailability
from milk and milk products [202]. Concentrations of zinc/citrate-complexes are higher in human milk
when compared to cow’s milk [203], which might explain the higher zinc absorption from human
milk [204].

Lastly, chemical and physical food processing also affect zinc bioaccessibility and availability [205].
In this context, particularly, the formation of heat-derived zinc-binding ligands, such as Maillard
browning products [206,207], decreases its availability, whereas fermentation or germination elevates
its accessibility due to phytate reduction [159,208].

4.3. Physiological Factors Affecting Zinc Absorption

Aside from dietary components, various physiological factors in the intestinal lumen influence the
solubility of zinc and its subsequent availability for the intestinal epithelium. One is the gastrointestinal
mucus layer, which enhances the luminal accessibility of the cation and positively influences its
bioavailability [69,209]. It is presumed to bind luminal zinc while preventing the formation of insoluble
zinc hydroxide [210] as well as hydroxypolymers (Zn(OH)n) [211] at intestinal pH of 6–7.4 [167].
Subsequent animal studies confirm this hypothesis and even indicate zinc buffering properties of
this physical barrier [211–213]. In vitro, gastrointestinal mucins bind zinc with a physiologically
relevant affinity, showing a dissociation constant of the mucin/zinc-complex in the same order of
magnitude as luminal zinc [103]. Since the mucus layer is not static, but represents a dynamic and
viscoelastic gel [214,215], these glycoproteins might assist zinc transport to the underlying epithelium.
The ability to bind the cation and buffer free zinc levels that would be available for intestinal cells
was studied with human goblet cells and enterocytes [103], and indicates the retention of luminal
available zinc [103], corroborating observations from previous animal studies [209,213]. Additionally,
a comparison of mucin-producing Caco-2/HT-29-MTX in vitro intestinal model with mucus-lacking
Caco-2 monocultures confirmed a beneficial role of mucins for intestinal zinc absorption, which shows
enhanced apical zinc uptake and higher fractional absorption when a mucus layer is present [103].
Mucins also bind several other metals, such as iron, lead, calcium, and aluminum [216–218] with
increasing affinity from M+ < M2+ < M3+ [212]. Consequentially, competitive binding of an ion might
influence its luminal availability for the underlying epithelium, while, potentially, explaining the
mutual interdependence of intestinal trace element absorption.

Lately, systemic factors were discussed to play a role in intestinal zinc absorption by regulating
uptake and transport into the systemic circulation. In this context, Hennigar et al. studied the impact
of the liver-derived humoral factor hepcidin, which plays an important role in iron absorption [219],
on enterocytic zinc transport [156]. Herein, basolaterally added hepcidin reduces cellular zinc
export into the blood by post-translationally downregulating ZnT-1 in the enterocyte cell line Caco-2.
Furthermore, the zinc content of enterocytes increases and mt-1a is upregulated, which, possibly,
controls subcellular zinc pools in enterocytes [156].
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Another physiological factor affecting intestinal zinc absorption is the albumin concentration on
the serosal side of the intestinal epithelium. Human blood contains about 30–50 mg mL−1 human
serum albumin (HSA) [220], where it is the main zinc binding and transporting protein [23] and
has high zinc binding affinity (molecular ratio of the albumin/zinc-complex 1:2, Kd (site A) = 100
nM) [221]. Bovine serum albumin (BSA) acts as a basolateral zinc acceptor, which enhances serosal
zinc export on the basolateral side of a three dimensional in vitro Caco-2/HT-19-MTX co-culture
model [102]. This remains to be confirmed using HSA, as interspecies differences in the structure of this
protein [222] might affect their zinc-binding properties and, consequently, their role as a basolateral zinc
acceptor. Notably, in vivo basolaterally applied rat serum albumin enhances fractional zinc absorption
in vascular perfusion experiments of rat small intestine, whereas fractional zinc absorption via the
intestinal epithelium decreases when no albumin is present [223]. Hence, the presence of albumin in
the blood circulation seems to be crucial for the intestinal zinc absorption.

In vitro basolateral zinc excretion of intestinal cells is enhanced by basolateral albumin, whereas
cellular zinc uptake from the apical side seems to be unaffected by this zinc acceptor [102]. This also
reiterates previous knowledge on intestinal zinc uptake and transport kinetics. The in vivo apical to
basolateral zinc transport is a saturable and carrier-mediated process [71], where apical zinc uptake is
suggested to be the rate-limiting step [70]. This process is mainly mediated by the apical zinc importer
ZIP4 and basolateral zinc exporter ZnT-1 [224], which are both regulated by dietary zinc. Hence, it is
rather unlikely that albumin only serves as a thermodynamic sink for the metal in blood and that
higher zinc transport in the presence of albumin is only based on a simple diffusion process, following
a zinc concentration gradient from the luminal to the basolateral side of the intestinal epithelium.
Consequently, this insinuates that albumin might influence the export of zinc from the enterocytes
via ZnT-1 into the blood, possibly by interacting with the transporter. However, the underlying
regulatory parameters that enhance the basolateral release of zinc in the presence of albumin have to
be further investigated.

5. In Vitro Studies on Intestinal Zinc Absorption

In the past 50 years, several analytical approaches have been applied to investigate intestinal zinc
absorption and its underlying mechanisms. The latter were mainly elucidated with ex vivo animal
studies, such as everted rat gut sacs [60,61], Ussing chambers with rat [225–229] and pig [230,231]
jejunal segments, and intestinal brush-border membrane vesicles from rat [72] and pig [232,233]
small intestines as well as in situ studies with isolated rat intestines using the (vascular) perfusion
technique [38,70,115,234] and the intestinal loop method [79]. Moreover, some human studies using
perfused intestine were performed as well [58,64]. Conversely, zinc absorption kinetics, fractional
absorption, efficiency of transport, and the impact of dietary components on zinc bioavailability
were mainly studied in vivo in humans and animals using (stable) isotope techniques [7,32,170,202].
Distinct processes on the cellular level, like the role of zinc transporters and metallothionein, however,
were predominantly investigated with in vitro cellular models [74,84,86,129,156], as they provide a
standardized and easy platform.

For the three R paradigm of animal testing [235], refined and reduced animal studies can be
complemented by in vitro cellular models as vital tools for achieving the “third R” of replacing animal
experiments [236]. Moreover, in vitro cellular models provide a standardized microenvironment
in which molecular processes can be investigated in detail. Hence, this section will focus on the
application of in vitro cellular models in the investigation of intestinal zinc absorption, illustrate
aspects to be considered when applying these models, and highlight the advantages of in vitro cellular
intestinal models compared to other in vitro or ex vivo methods. The advantages and limitations of
these intestinal models for investigating the intestinal zinc absorption are summarized in Table 2.
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Table 2. Comparison of intestinal models to study intestinal zinc transport and absorption.

Intestinal Model Method Main Outcome Advantage Disadvantage References

Ussing chamber

- ex vivo: Isolated epithelium
from pig, rat intestinal tract
mounted into the
Ussing chamber

- zinc transport rates from
mucosa to serosa

- effect of zinc on epithelial
secretion and
electrophysiological response

- zinc transport via ex vivo
intestinal epithelium,
including different intestinal
cell types and mucus layer,
can be investigated

- not easy to standardize
because of inter-individual
differences [237]

[225–231]

Everted gut sac
- ex vivo: isolated rat intestinal

segments (duodenum,
jejunum, colon)

- zinc uptake by the
intestinal segment

- absorptive properties of the
distinct intestinal segments

- not easy to standardize
because of
inter-individual differences

- peristaltic and fluid flow
is missing

[60,61]

Perfused intestine

- ex vivo or in situ: isolated
segments from intestine,
vascularly and/or
luminally perfused

- fractional zinc absorption
- zinc transport kinetics

- zinc transport kinetics via the
intestinal epithelium in a
physiological vicinity (mucus
layer, various intestinal cells)

- expensive, elaborate [38,70,115,234]

Brush border
membrane vesicles

- in vitro: BBM vesicles are
prepared from isolated
intestinal mucosa from rat
or pig

- zinc transport kinetics
- interactions of zinc with BBM

- suitable system to
characterize and estimate
transport kinetics that occur
solely via BBM

- mucus layer is removed
during preparation of BBM

- part of intracellular zinc
homeostasis in regulating
transport via BBM
is disregarded

[72,232,233]

In vitro intestinal
cell model

- In vitro intestinal cells
cultivated in three-dimensional
transwell dishes

- Caco-2 mono-cultures
- Caco-2/HT-29-MTX co-cultures
- hiPSC
- IPEC-1, IPEC-J2 (porcine

intestinal model)

- fractional zinc absorption and
zinc transport kinetics

- molecular parameters of zinc
uptake and absorption

- standardized
microenvironment to study
molecular parameters as well
as absorption kinetics

- combinable with in vitro
digestion models to study
zinc bioavailability from
digested food samples

- mostly using in vitro cell
lines, that are tumorigenic
and transformed

- basolateral sink and fluid
flow is missing

- apical and basolateral
peristaltic is missing

[66–68,71,96,102,103,120,
156,238–243]

BBM, brush border membrane; hiPSC, human induced pluripotent stem cells.
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5.1. Investigation of Zinc Uptake and Transport Using In Vitro Cellular Intestinal Models

Until now, predominantly, the human Caco-2 cell model was used to elucidate intestinal zinc
absorption and transport with in vitro studies. This model is widely employed to determine the
absorption of various drug compounds as well as the uptake and transport kinetics of (micro-)
nutrients [244–247] and is recognized by the FDA, giving promising correlations for fractional
absorption of several drug components [248]. When cultured for 21 days, the epithelial colon
carcinoma cell line Caco-2 differentiates into a state functionally and morphologically resembling
human enterocytes [249,250]. They form an intact monolayer with important characteristics of the
intestinal epithelium, including microvilli as well as tight junction proteins, and express several
important proteins for intestinal transport [251,252]. In three-dimensional cultures, the cellular
monolayer, seeded on Transwell inserts, forms an intact barrier mimicking the intestinal epithelium,
whereas the apical transport chamber corresponds to the intestinal lumen and the basolateral side
represents the serosal blood side [10] (Figure 5). By these means, a substance of interest, such as zinc,
can be tracked from the apical compartment, its transport into the cells, and through the intestinal
epithelium into the blood. Furthermore, this model can be combined with in vitro human digestion
models to study bioavailability and absorption of the micronutrient from digested complex food
samples [243,253,254].
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Figure 5. Schematic representation of the three-dimensional in vitro cellular intestinal model Caco-2.
(A) The intestinal epithelium in vivo is mainly composed of enterocytes and goblet cells [255], which
represents about 90% of intestinal cells of the brush border membrane [256,257]. These are covered by
a viscoelastic gel: the mucus layer. This physical barrier is synthesized and secreted by goblet cells and
serves as a protective layer for the underlying epithelium. (B) Three-dimensional Caco-2 monoculture
in the “Transwell® system”. The intestinal cell line Caco-2 is cultured in inserts on a permeable
membrane, and, in most cases, composed of polycarbonate. This results in three compartments: an
apical compartment representing the intestinal lumen, a basolateral side corresponding to the serosal
surface of enterocytes, and the intestinal barrier formed by differentiated Caco-2 cells.

While human zinc absorption and transport kinetics were characterized using three-dimensional
Caco-2 models (Table 3), a two-dimensional culture of these cells was additionally applied to investigate
zinc uptake parameters. Furthermore, this model was widely used to study the effects of various dietary
food components on intestinal zinc bioavailability [96,243,247,258–272] and to elucidate the regulatory
role of intestinal zinc transporters and metallothionein in zinc absorption [74,86,87,144,242,273–280].
Notably, the impact of dietary zinc on zinc transporters and metallothionein expression in Caco-2 cells
is very well comparable to the homeostatic regulation of these proteins in human small intestine [86].
Supplementary Tables S3 and S4 summarize the studies’ design and outcome.
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Table 3. Zinc transport studies using in vitro intestinal models.

Cell Model Incubation Parameter Type of Zinc Main Outcome Reference

Caco-2 cells Cultivation time: 14 d 3D
Transwell (PC membrane) 14 d

ZnCl2 20 µM (Kinetic 0–50 min) 0–100 µM (10 min)
(in salt buffer on apical and basolateral side)
Inhibitor: ouabain, vanadate, dinitrophenol,

sodium cyanide, ammonium vanadate Potential
zinc ligands: histidine, cysteine,

proline, glutathione

radioactive zinc (65Zn)

- cellular zinc uptake is saturable process
- Km = 41 µM Vmax = 0.3 nmol/cm2/10 min
- basolateral zinc uptake was partially inhibited

(30%) by ouabain and vanadate, which suggests
an involvement of the (Na-K)-ATPase in
serosal uptake

- apical zinc uptake was not affected by metabolic
inhibitors and ligands

- basolateral zinc uptake (50 min) ~ 0.47 nmol/cm2

- zinc transport ~ 0.8 nmol/cm2 (20 µM, after
50 min)

- transport from basolateral to apical is higher
than from the apical to the
basolateral compartment

[66]

Caco-2 cells Cultivation time: 18–21 d
3D Transwell

ZnSO4 10–1000 µM (for 90 min) 10 nM
1α,25-dihydroxyvitamin D3 (preincubation for 72

h) + 100 µM ZnSO4 (for 90 min) Apical:
MES-buffer with NaCl, KCl, MgSO4, CaCl2,

glutamine, glucose, Basolateral: 2.5 mg/mL BSA in
Hepes with NaCl, KCl, MgSO4, CaCl2,

glutamine, glucose,

radioactive zinc (65Zn)

- saturable zinc uptake kinetic up to 1000 µM
- Km = 226 µM
- zinc transport rate (after 90 min): ~10 µM:

~0.12 nmol/cm2 ~50 µM: ~0.25 nmol/cm2

- zinc transport increased in vitamin D3
incubated cells

- mt-2a mRNA and protein was increased with
greater zinc concentrations

- Crip mRNA (30% less expressed in Caco-2 cells
than in rat mucosa) was decreased by vitamin
D3 treatment

[238]

Caco-2 cells Cultivation time: 21 d 2D,
3D Transwell (PE membrane)

zinc species: n.a. 1–200 µM (in DMEM + 10% FCS
on apical and basolateral side) for 0–30 h radioactive zinc (65Zn)

- saturable zinc uptake at the
basolateral membrane

- apical zinc uptake and zinc transport, both from
apical to basolateral and vice versa, were
not saturable

- higher transport from apical to basolateral
- transport rate 50 µM: 6 pmol/h/cm2

- transport from apical to basolateral was
independent from basolateral zinc concentration

- study indicates that zinc uptake and
transcellular movement are different at the
apical and basolateral side

[67]
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Table 3. Cont.

Cell Model Incubation Parameter Type of Zinc Main Outcome Reference

Caco-2 cells Cultivation time: 14–16
days of 3D Transwell (Polyethylene

terephthalate membrane)

ZnSO4 0–1000 µM (in DMEM + 10% FCS on apical)
and 0–450 µM (in DMEM + 10% FCS on

basolateral side) for 24 h
total Zn

- applied 0–1000 µM zinc on apical or 7–450 µM
zinc basolateral side

- transport occurs from both sides to the
other compartment

- accumulation in the cells was low, particularly
when zinc was added on the apical side

- zinc toxicity on cell viability and integrity of the
intestinal barrier (TEER) 0–2000 µM zinc:

- observed higher toxicity when adding high zinc
concentrations to the basolateral side

[68]

Caco-2 cells Cultivation time: 18–21
days of 3D Transwell (PC)

ZnCl2 50–200 µM (in serum free medium on apical
and basolateral side) for 6 h, 12 h, and 24 h radioactive zinc (65Zn)

- zinc transport an MT secretion (HPLC analysis)
- this study suggest that MT is secreted into the

gastrointestinal lumen and plays a role in
intestinal zinc uptake

- zinc transport (after 6 h)
- 100 µM: ~2.0 nmol/cm2

[120]

Caco-2 cells Cultivation time: 21 d 3D
(PES-HD membranes)

ZnSO4 5 µM or 25 µM (in DMEM + 10% FCS on
apical and basolateral) (preincubation for 7 d) radioactive zinc (65Zn)

- zinc uptake and transport were measured in
both apical (AP) and basolateral (BL) directions

- rate of apical zinc uptake and transport rate to
basolateral was lower in cells pretreated 25
µM zinc

- basolateral zinc release was higher in cells
treated with 25 µM

- cellular zinc uptake 2–3 nmol mg−1 protein
- induction of MT (analyzed using radiolabeled

cadmium) was zinc-dependent, increasing with
zinc concentration

[239]

Caco-2 cells Cultivation time: 21 d 3D
Transwell (PC)

ZnSO4 15.6–500 µM (apical: KHB buffer,
basolateral: KHB-buffer + 5% BSA) total Zn

- comparison with zinc transport across isolated
rat small intestine

- rat: Km = 10–12.1 µM
- Caco-2 Km = 11.7 µM

Vmax = 31.8 pmol min−1 cm−2

- transport across Caco-2 monolayers is
carrier-mediated and energy-dependent

- zinc transport into basolateral chamber followed
a saturated process

- transport rate: 50 µM: 39 pmol min−1 cm−2

- mRNA expression of zip-4, zip-5, znt-1, mt1, mt2
in duodenum, jejunum, and ileum of isolated rat
small intestine

[71]
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Table 3. Cont.

Cell Model Incubation Parameter Type of Zinc Main Outcome Reference

Caco-2 cells Cultivation time: 17 days
3D Transwell

(Polytetrafluoroethylene)

ZnSO4 100 µM (serum free medium on apical and
basolateral side) for 3–24 h 1 µM hepcidin stable zinc isotope (67Zn)

- hepcidin reduces basolateral zinc export by
post-translationally downregulation of ZnT-1

- cells incubated with hepcidin showed less zinc
export while cellular zinc and mt-1a mRNA
increased, cell surface ZnT-1 as well as ZnT-1
protein decreased

- hepcidin might play a role in controlling zinc
absorption and enterocyte subcellular zinc pools

[156]

Caco-2/HT-29-MTX co-culture
Cultivation time: 21 days 3D

Transwell (PC)

ZnSO4 0–100 µM (apical: serum-free transport
buffer, basolateral: DMEM +10% FCS + 0 or

30 mg mL−1 BSA) for 8 h
total Zn

- albumin has a role in in vitro zinc absorption as
a basolateral zinc acceptor

- cellular uptake is not significantly different with
or w/o basolateral added albumin

- basolateral serum albumin enhances cellular
zinc export to the basolateral side

- fractional absorption (25–100 µM): w/o BSA: ~2%
with BSA: 5.8–2.9%

- zinc transport rates (0–100 µM): w/o BSA:
0.1–2.2 nmol cm−2 with BSA: 1.1–3.6 nmol cm−2

[102]

Caco-2/HT-29-MTX co-culture and
Caco-2 monoculture Cultivation time:

21 days 3D Transwell (PC)

ZnSO4 0–100 µM (apical: serum-free transport
buffer, basolateral: DMEM + 10% FCS +

30 mg mL−1 BSA) for 4 h
total Zn

- intestinal mucins influence cellular zinc uptake
and zinc transport

- results suggest that mucins facilitate zinc uptake
into enterocytes and act as a zinc delivery system

- mucins are an integral part of intestinal
zinc absorption

- fractional absorption (25–100 µM): monoculture:
1.6–0.9% co-culture: 4.2–1.9%

- zinc transport rates (0–100 µM): monoculture:
0.3–1.3 nmol cm−2 co-culture: 1.1–2.3 nmol cm−2

[103]

3D, three-dimensional. BSA, bovine serum albumin. DMEM, Dulbecco’s Modified Eagles Medium. FCS, fetal calf serum. HBSS, Hank’s Balanced Salt Solution. HD, high density. KHB,
Krebs-Henseleit buffer. n.a., not available. PC, polycarbonate. PE, polyethylene. PES, polyester. Zn, zinc.
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Aside of Caco-2-models, some studies on intestinal zinc uptake and transport were also done using
the in vitro intestinal model IPEC-1 [281] and IPEC-J2 cells [242,275,282,283]. The non-transformed cell
lines IPEC-1 and IPEC-J2 are derived from porcine intestine and are mainly used as in vitro models
for pig intestine [284,285], but are described to resemble human enterocytes closer than any other
animal-derived cell line [286].

5.2. Buffer Composition of In Vitro Cellular Intestinal Models

Speciation of zinc in cell culture medium or buffer severely affects its availability and cellular
uptake in in vitro experiments [220,287]. A particular problem in this context is fetal calf serum
(FCS), which proves to be an unpredictable factor due to its variability [288] and contains about 60%
albumin in its protein fraction [289]. Notably, FCS is commonly used in cell culture [290] just as
10% FCS is used in many of the in vitro intestinal cell models presented in Table 3, which results
in a final albumin concentration of 1.55 mg mL−1 [288] (corresponding to 24.2 µM) in the medium.
Since albumin binds zinc with high affinity [221], apically added FCS or BSA severely impact its
bioavailability for cells in vitro, as shown by decreased zinc toxicity [102] and uptake in the presence
of these proteins [102,220,291,292].

Adding albumin to the apical side of in vitro intestinal models certainly does not represent
the in vivo situation in the intestinal lumen and should be avoided when studying intestinal zinc
absorption. When this protein is used as an apical component in some of the in vitro zinc transport
studies based on three-dimensional Caco-2 models (Table 3), zinc transfer via the in vitro intestinal
barrier is altered. Direct comparison of results from studies that were conducted in different laboratories
is generally difficult. Nevertheless, comparing the outcome of zinc transport experiments using Caco-2
monocultures where zinc is applied on the apical side together with 10% FCS [67] with a study
where no FCS is added to the apical side [103], the presence of 10% FCS diminishes cellular available
zinc resulting in considerably smaller zinc transport rates (with 10% FCS: transport rate of apically
applied 50 µM zinc after 4 h: 0.02 nmol cm−2 [67]; without FCS: transport rate of 50 µM zinc after 4 h:
0.95 nmol cm−2 [102]). In fact, the authors of this study [67] applied 10% FCS on the apical side of their
intestinal model to mimic the luminal protein matrix during transport studies. However, the presence
of intact proteins does not accurately reflect the luminal environment in vivo, as they would have
been digested into smaller molecules (peptides or amino acids). Apical addition of zinc together with
in vitro digested albumin significantly increases the zinc bioavailability for Caco-2 cells compared to
undigested protein [102].

In contrast to the apical side of in vitro models, where albumin should be excluded, serum
albumin is the main zinc transporting protein in plasma. As already discussed, serum albumin is
an important physiological factor for intestinal zinc absorption and influences zinc excretion from
enterocytes into the blood circulation [102]. The zinc-accepting role of albumin during the absorption
process emphasizes the relevance of this basolateral constituent, which, consequently, has to be added
to the basolateral compartment of the intestinal models to resemble the blood in vivo.

Some of the in vitro zinc transport studies performed with Caco-2 models (Table 3) use cell culture
medium with 10% FCS for the basolateral compartment [67,68,71,102,103,239]. This FCS concentration,
however, yields only 3–5% of the serum albumin concentration in vivo. Although some in vitro studies
apply zinc to the basolateral compartment, mainly to investigate the serosal zinc uptake into the
intestinal epithelium [66–68,239], the apical zinc transport in the presence of physiological zinc and
albumin concentrations on the basolateral side has not been investigated in these studies. In this case,
the zinc content on the basolateral side originated predominantly from FCS [67,68,71,239]. The exact
basolateral zinc concentrations in these studies are unknown. FCS generally contains higher amounts
of zinc than cell culture medium [293], but its total zinc content varies significantly, which leads
to final zinc concentrations between 3 [74] and 14 µM [294] in complete media. The addition of
albumin, apart from the amount already present in FCS, to the basolateral side of the in vitro model,
however, was only performed in four of the in vitro transport studies with Caco-2 monocultures or
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Caco-2/HT-29-MTX co-cultures, respectively, by applying very low (2.5 mg mL−1) [238] or physiological
albumin concentrations (5% BSA, corresponding to 50 mg mL−1 albumin [71], and 30 mg mL−1

albumin [102,103]).

5.3. Cellular Composition of In Vitro Cellular Intestinal Models

The in vitro Caco-2 model lacks one very important factor of the intestinal epithelium, which is the
mucus layer. The intestinal epithelium in vivo is not only composed of enterocytes, but also includes
goblet cells, producing and secreting mucins, covering the whole gastrointestinal tract (in detail,
reviewed in References [214,295]). As already discussed, the mucus layer provides an important
physiological luminal factor for intestinal zinc uptake and absorption [103,212,213]. Consequently,
the application of a mucus layer or mucin-producing cells in in vitro models to study intestinal zinc
absorption should not be neglected. Simulation of the mucus layer by adding isolated (porcine) mucins
on top of three-dimensional Caco-2 monocultures was previously critically discussed in connection with
iron transport and zinc uptake studies [103,254,296]. These mucins do not display similar viscoelastic
and gel forming properties of the gastrointestinal mucus layer in vivo because of their isolation and
purification process [297,298]. Moreover, isolated mucins do not simulate transmembrane mucins,
which represent an important fraction of the mucus layer in vivo [295].

Co-culturing Caco-2 cells together with the goblet cell line HT-29-MTX yields an in vitro model that
not only constitutes the two main cell types of the intestinal epithelium [255], but also contains mucus
covering the whole cell layer [254]. Moreover, this co-culture does not only improve the in vitro intestinal
Caco-2 model regarding the presence of a mucus layer, but was also reported to optimize the cellular
permeability of conventional Caco-2 monocultures [299,300] and is considered a more physiological
in vitro model [256,301]. The Caco-2/HT-29-MTX model is well characterized [299,302–304] and
was already used to investigate the absorption of different metal species [254,305–307], the effect of
nanoparticles on nutrient absorption [308], and bacterial adhesion [309]. Recently, a Caco-2/HT-29-MTX
model, optimized with respect to its buffer composition and basolateral serum concentration, was
applied to study the absorption of zinc via the human intestinal epithelium in the presence of a mucus
layer [102,103]. This in vitro intestinal model showed enhanced net absorption and transport rates
of apically applied physiological zinc concentrations (25–100 µM) compared to conventional Caco-2
monocultures [67,120,243] and comparable amounts of actually transported zinc to those estimated
in vivo [105].

Regarding the cellular composition of the intestinal epithelium and its vicinity, it would certainly
be worthwhile to analyze zinc transport via the intestinal barrier in the presence of other intestinal cells
in addition to enterocytes and goblet cells. There are various three-dimensional Caco-2 co-cultures or
even triple-co-cultures of Caco-/HT-29-MTX with different cell lines, including immune cells such as
THP-1 human macrophages or the M-cell-resembling Raji B cell line (reviewed in Reference [310]).
Additionally, using a triple-co-culture of Caco-2/HT-29-MTX with peripheral blood mononuclear cells
(PBMC) [311,312] would provide the option to study the impact of leukocytes in the blood serum on
intestinal zinc absorption.

5.4. Comparison of In Vitro Cellular Intestinal Models with the In Vivo Situation

Applying in vitro models to mimic processes in vivo requires critical consideration of their
limitations. Even though current research aims to use improved and more physiological
in vitro intestinal models, like the mucin-producing in vitro co-culture Caco-2/HT-29-MTX [105,256],
for studying zinc transport, there are differences in the in vivo intestinal epithelium that have to be
considered. Two important physical factors in the intestine in vivo are lacking in the in vitro models:
intestinal and blood fluid flow as well as peristaltic motions. Intestinal peristalsis enables movement
of chyme along the intestine and increases mechanical degradation of food components [255], which is
important for the digestion process and availability of nutrients for absorption. On the other hand,
absorbed zinc is bound to albumin in vivo and continuously transported within the blood circulation,
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which distributes the cation throughout the whole body [23]. This sink is missing in vitro and absorbed
zinc accumulates in the basolateral compartment of three-dimensional cell models.

Table 3 summarizes studies of zinc absorption using three-dimensional Caco-2 mono- and
co-cultures, which depicts parameters of cell models including buffer composition and the main
outcome of the study. Regardless of the detailed experimental setting, almost all transport studies
obtained with Caco-2 models observe saturable apical zinc uptake and transport kinetics. Two different
studies using Caco-2 monocultures observed non-saturable zinc uptake from the apical side, both
using regular cell culture medium with 10% FCS for their apical zinc treatment [67,68] and either
of them unphysiologically high zinc concentrations [68]. Additionally, the transported amount of
the micronutrient to the basolateral side is not comparable to that in vivo [67]. This underlines the
importance of applying zinc corresponding to physiological concentrations in the intestinal lumen
in vivo, particularly when analyzing transport and uptake kinetics, in order to prevent artefacts.

Km values for zinc uptake of 41 µM [66] or 11.7 µM [71] obtained with Caco-2 are in the same
order of magnitude as those determined with in vitro rat intestines (Km = 10–12 µM [71]), rat perfused
intestines (Km = 32 µM [38]; Km = 29 µM [73], Km = 55 µM [70]), or brush-border membrane vesicles
from pig (Km = 67 µM [196] or rat (Km = 24 µM [313]). Accordingly, Caco-2 cells seem well suited for
studying intestinal zinc uptake.

Compared to the fractional zinc absorption of in vitro cellular models (~2–6%) [102,103,243],
the estimated net absorption of 16–50% for humans in vivo [7,30,33,75–77] is significantly higher.
Notably, most of these in vivo studies investigate fractional zinc absorption from meals containing
dietary ligands that affect zinc bioavailability in the intestinal lumen [36], whereas, in the in vitro
studies, zinc is mainly added as liquid solutions and without a food matrix. In vivo studies estimating
the fractional zinc absorption from liquid solutions with comparable zinc concentrations to those
applied in the in vitro studies are scarce [57,58]. Even though the application of improved and more
physiological in vitro intestinal models, which include a mucus layer and basolateral added serum
albumin, result in higher zinc net absorption [102], the amounts represent only about 10% of the
fractional zinc absorption in vivo when analyzing the absorption of zinc levels typically found in the
intestinal lumen after a meal [7,105].

To explain this discrepancy, the ratio of intestinal liquid per absorption area has to be taken
into account. The absorption area of in vitro three-dimensional intestinal models (commonly using
Transwell inserts with an area of 1.12–4.67 cm2) is a lot smaller than the intestinal epithelium (about
30,000 cm2 [314]). This rough assessment does, however, not include the actual amount of absorptive
enterocytes per absorption area and disregards the increase in absorption area in vitro by microvilli
formation of Caco-2 cells. The volume of intestinal liquid in lumen in vivo amounts to around 3 L [255]
(corresponding to 0.1 mL cm−2), whereas, in an in vitro model with an absorption area of 1.12 cm2

(typical apically added volume: 500 µL), the volume to area ratio is 0.45 mL per cm2, which leads to
a 4.5-fold higher apically applied liquid volume per cm2 absorption area in vitro. Hence, the total
amount of zinc available for transport per absorption area in vitro is greater than in vivo, which distorts
fractional absorption. Assuming that expression and activity of the main zinc transporters in Caco-2
cells in vitro correspond to those in vivo, which we certainly do not know yet, a higher ratio of zinc per
cm2 absorption area in the in vitro model could explain a smaller fractional absorption. Regrettably,
adjusting the liquid volume applied into apical chambers of in vitro intestinal models to the volume
per cm2 ratio in vivo (0.1 mL cm−2) is not an option, as it would impair cellular viability.

Remarkably, the amounts of zinc that are actually transported per cm2 absorption area to the
basolateral side of three-dimensional in vitro models are comparable to quantities absorbed per cm2 of
intestinal epithelium into the blood circulation in vivo. Table 4 depicts estimated amounts of actual
transported zinc in vitro and in vivo, using data of an in vitro Caco-2/HT-29-MTX co-culture [102] and
a human in vivo study by Hunt et al. [7], where comparable zinc concentrations are applied with a
meal. This also applies to some of the studies using in vitro Caco-2 mono-cultures [66,103,120] and
Caco-2/HT-29-MTX co-cultures [103] presented in Table 3. Consequentially, when comparing the
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results from in vitro cellular intestinal models with the in vivo zinc absorption, it is more relevant to
correlate the actual amount transported per cm2 absorption area than net absorption of zinc.

Table 4. Total amounts of absorbed zinc in vivo and in the in vitro intestinal model Caco-2/HT-29-MTX.

In Vitro Caco-2/HT-29-MTX [102] (Absorption Area = 1.12 cm2, Volume: 500 µL)

Apical Zinc Fractional Absorption (%) Absorbed Zinc (µg/Total
Absorption Area)

Absorbed Zinc
(µg cm−2)

100 µM = 3.23 µg/1.12 cm2 2.9 0.09 0.08
25 µM = 0.82 µg/1.12 cm2 5.8 0.05 0.04

In vivo [7] (Absorption Area = ~30 m2 [314], Volume: ~3 L [255])

Apical Zinc Fractional Absorption (%) Absorbed Zinc (µg/Total
Absorption Area)

Absorbed Zinc
(µg cm−2)

17 mg/30 m2 = 86 µM 24 4080 0.14
4.3 mg/30 m2 = 21 µM 49 2100 0.07

6. Analytical Approaches to Studying In Vitro Zinc Absorption and Bioavailability

Zinc absorption and bioavailability in humans is mostly analyzed with (stable) isotope tracer
techniques, primarily measuring fractional zinc absorption [315]. In earlier studies, the zinc radioisotope
65Zn was also used to investigate zinc homeostasis [316] and bioavailability in humans [317], but is
currently replaced by non-radioactive and stable isotopes [318] and solely employed in vitro [66,71,79].

In three-dimensional in vitro cellular intestinal models, the quantity of the metal in the apical
and basolateral compartment as well as the cellular zinc content is analyzed to determine the
amount of absorbed and actually transported zinc to the blood side (Figure 6A). Thus, transport
kinetics, net absorption, and bioavailability of luminally-added zinc species are investigated. Aside of
(stable) isotope techniques, zinc is generally quantified with inductively coupled mass spectrometry
(ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), or atomic absorption
spectrometry (AAS) [319]. In addition to measuring the most abundant stable zinc isotopes, 64Zn
or 66Zn, with ICP-MS, 70Zn was recently used to determine cellular zinc uptake kinetics while
simultaneously distinguishing between cellular basal zinc levels and zinc that was actually absorbed
by the cells [320]. Hence, applying this method in in vitro intestinal models would provide a fruitful
approach for scrutinizing enterocyte homeostasis of this micronutrient during zinc absorption.
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Figure 6. Application of in vitro cellular intestinal models to study intestinal zinc transport. Schematic
representation of the three-dimensional intestinal Caco-2/HT-29-MTX co-culture model. (A) Zinc
is quantified in all three compartments (apical, cellular, basolateral) with conventional analytical
approaches, such as inductively coupled mass spectrometry (ICP-MS) or flame atomic absorption
spectrometry (FAAS). (B) The application of chemical-based or protein-based fluorescent zinc sensors
in enterocytes provides additional information about the subcellular distribution of the micronutrient
upon its uptake into the cell. These sensors bind intracellular free zinc and track small changes of
this zinc moiety. Depending on the subcellular localization of the sensor, the cytoplasmic free zinc
pool or free zinc in organelles, such as vesicles and the endoplasmic reticulum (circled in red) can
be investigated.

Aside of determining enterocyte zinc uptake or transport, in vitro intestinal models offer the
great opportunity to scrutinize subcellular compartmentalization of the metal by providing additional
information about its disposition and cellular availability after its absorption into enterocytes (Figure 6B).
Fluorescent zinc sensors are a versatile tool for analyzing small subcellular changes of free zinc [321].
These sensors bind free or mobile zinc, which represents a particularly small fraction of the cellular
zinc content.

Fluorescent zinc sensors can be classified into low molecular weight (LMW) sensors (or chemical
sensors) and genetically-encoded biosensors [321]. Below, their function and application in intestinal
cell models in vitro as well as advantages and disadvantages of the two classes of sensors are
briefly summarized.

The principle of most LMW sensors is based on photo-induced electron transfer (PET) between
the fluorophore and a chelating unit, which, in case of a non-radiometric sensor, quenches fluorescence
when no metal is present. Metal binding leads to disruption of PET and increase of fluorescence
(reviewed in detail in Reference [322]). After entering the cells by passive diffusion, changes in
fluorescence upon binding of intracellular free zinc can be analyzed with fluorescence spectrometric
methods to quantify free zinc or use fluorescence microscopy to image spatial distribution of the
cation [322,323].

The basic concept of genetically-encoded sensors is comparable to LMW probes, which
results in measurable fluorescence changes upon zinc binding. Various ratiometric biosensors
have been developed based on Förster resonance energy transfer (FRET) between two fluorescent
molecules [324–327]. Generally, these fusion proteins are composed of two fluorescent domains and
a metal binding site connected by a flexible linker. Emission wavelength of the donor fluorescent
domain overlaps with the excitation wavelength of an acceptor domain, which results in a FRET signal
when these fluorescent molecules are in spatial proximity. Conformational changes upon zinc binding
consequentially lead to a shift of FRET signals [322]. Moreover, Aper et al. created the first set of
zinc-dependent bioluminescence resonance energy transfer (BRET) biosensors, where, instead of a
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donor fluorophore, a stable NanoLuc luciferase domain is exciting the acceptor fluorescent molecule
via BRET [328]. Most recently, Palmer et al. developed a biosensor based on a single fluorescent
protein [329]. In contrast to low molecular weight sensors, these probes are genetically encoded and,
thus, transfected as plasmids into the cells [325]. Consequently, the cell produces the sensor controlling
its subcellular concentrations and distribution, which makes them particularly convenient for long-term
measurements and less invasive than chemical probes [97,321]. Introduction of BRET-based biosensors
circumvents some disadvantages of FRET-sensors by including autofluorescence and photobleaching
of fluorophores due to the illumination of the sample, which is necessary for the excitation of the donor
domain [328]. Furthermore, FRET analysis requires an elaborate technical approach based on laser
scanning microscopy determining FRET or fluorescence life time imaging (FLIM)-FRET, and is almost
exclusively limited to analyzing single cells [330]. BRET-based biosensors can be employed in high
throughput screening assays using bioluminescence plate readers [328,331,332].

Of particular interest are zinc biosensors with organelle-specific targeting, which accumulate in
distinct organelles within the cell, such as mitochondria, Golgi apparatus, endoplasmic reticulum,
and cell membranes [324,333–335]. Although subcellular distribution of LMW sensors is generally
not easy to control, chemical probes with specific cellular targeting have already been successfully
developed [336–338].

In terms of application of these sensors in human intestinal cell lines to either measure zinc
uptake or analyze its subcellular distribution, low molecular weight sensors Zinpyr-1 [96,102,103],
Fluozin-3 [156,339,340], and Zinquin [339] were already used in Caco-2 and the colorectal
adenocarcinoma cell line HT-29 (Table 5). Recently, a Caco-2 clone stably expressing the FRET
biosensor eCalwy-5, originally generated by Merkx and co-workers [325], was established [101] by
providing a well characterized in vitro intestinal model to study intestinal zinc uptake. It can be
co-cultured with other cell lines, such as HT-29-MTX, allowing it to specifically analyze free zinc in
Caco-2 cells of co-cultures. Consequentially, the micronutrient can be tracked after its absorption into
enterocytes in the presence of goblet cells and a mucus layer, while LMW probes would always stain
the entire model.
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Table 5. Application of chemical-based and protein-based fluorescent sensors to study free zinc in enterocytes.

Cell Model Sensor Incubation Parameter Main Outcome Reference

HT-29 Cultivation time:

- proliferating cells: 24 h
- resting cells: 48 h

(serum depleted)
- differentiated cells: 6 days

(first 72 h with sodium
butyrate); 2D

FluoZin-3 (Kd = 8.9 nM)
Newport Green (Kd = 30 µM)

(low molecular weight sensors)

- sensor pre-incubation: 0.3–5 µM
FluoZin-3 or 5µM Newport Green for
30 min in DPBS

- spectrofluorometer

- free zinc in HT-29 0.6–1.2 nM for
proliferating, resting or
differentiated cells

- a surplus of zinc-binding proteins
buffer the intracellular free zinc
concentration and guarantee a stable
zinc homeostasis

[340]

Caco-2/TC7 Cultivation time:
15-17 days; 2D

FluoZin-3 (Kd = 15 nM) Zinquin
(low molecular weight sensors)

- sensor pre-incubation: 1 µM
FluoZin-3; 25 µM Zinquin

- samples were fixed with
paraformaldehyde prior staining

- fluorescence microscope

- both sensors accumulate in
vesicle-like structures

- imaging of free zinc distribution and
tight junction formation
in enterocytes

[339]

HT-29 Cultivation time: n.a.; 2D Newport Green (low molecular
weight sensor)

- sensor pre-incubation: 5 µM Newport
Green for 30 min in assay buffer a

- fluorescence microplate reader

- increase of intracellular free zinc
levels after zinc treatment are lower
than changes in total cellular

[341]

Caco-2 Cultivation time:
17 days; 2D

FluoZin-3 (Kd = 15 nM)
(LMW sensor)

- sensor pre-incubation: 1 µM
FluoZin-3 for 1 h in OptiMEM,

- fluorescence microscope and
microplate reader

- sensor accumulates in vesicles
- basal free zinc decreases after

treatment with hepcidin
[156]

Caco-2 Cultivation time:
10 days; 2D

Zinypr-1 (Kd = 0.7 nM) (low
molecular weight sensor)

- sensor pre-incubation: 50 µM
Zinpyr-1 for 1 h in PBS

- fluorescence microscope

- zinc uptake from different
zinc-complexes with amino acids [96]

Caco-2-eCalwy Cultivation
time: resting state; 2D

eCalwy-5 (Kd = 1.85 nM)
(Genetically encoded
protein-based sensor)

FRET and FLIM-FRET measurements using
low molecular weight (LSM) in

assay buffer b

- eCalwy protein is mainly localized in
the cytoplasm of the
Caco-2-eCalwy clone

- cytoplasmic free zinc was estimated
to be around ~2 nM

[101]
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Table 5. Cont.

Cell Model Sensor Incubation Parameter Main Outcome Reference

Caco-2 Cultivation time:
21 days; 2D

Zinpyr-1 (Kd = 0.7 nM) (low
molecular weight sensor)

- sensor pre-incubation: 2.5 µM
Zinpyr-1 for 30 min in assay buffer +
0.3% BSA

- fluorescence microplate reader

- sensor accumulates in
cellular vesicles

- basal free zinc was estimated to be
~0.2 nM

[102]

Caco-2 Cultivation time: 21
dHT-29, HT-29-MTX

Cultivation time:7 days; 2D

Zinypr-1 (Kd = 0.7 nM)
(LMW sensor)

- sensor pre-incubation: 2.5 µM
Zinpyr-1 for 30 min in assay buffer +
30% BSA

- fluorescence microplate reader

- sensor accumulates in cellular
vesicles (HT-29, HT-29-MTX, Caco-2)

- basal free zinc was estimated to be
~0.5 nM in HT-29-MTX, 0.8 nM
for HT-29

[103]

2D, two-dimensional. BSA, bovine serum albumin. DMEM, Dulbecco’s Modified Eagles Medium. DPBS, Dulbecco’s phosphate buffered saline. FCS, fetal calf serum. FLIM, fluorescence
lifetime imaging microscopy. FRET, Förster resonance energy transfer. HBSS, Hank’s Balanced Salt Solution. HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. LSM, laser
scanning microscope. n.a., not available. PBS, phosphate buffered saline. a 120 mM NaCl, 5.4 mM KCl, 0.8 mM MgCl2, 20 mM Hepes, 15 mM glucose, 1.8 mM CaCl2, 10 mM NaOH, pH 7.4.
b 120 mM NaCl, 5.4 mM KCl, 5 mM glucose, 1 mM CaCl2, 1 mM MgCl2, 1 mM NaH2PO4, 10 mM HEPES, pH 7.35.
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7. Conclusions and Outlook

Regarding human intestinal zinc absorption, there are several points that still await to be answered.
Accordingly, zinc homeostasis of enterocytes and the molecular processes inside these cells during
intestinal zinc absorption have to be further investigated. In particular, the zinc transfer through
enterocytes upon its absorption, its subsequent basolateral release into the blood circulation, and the
involvement of a zinc-binding or -trafficking protein in this process, other than MTs, need to be
studied in more detail. In addition, the involvement of zinc transporters in cytoplasmic organelles of
enterocytes (like ZnT-2, ZnT-4, ZnT-6, and ZnT-7) in cellular zinc trafficking and homeostasis has to
be addressed. In recent years, the relevance of post-transcriptional modifications of intestinal zinc
transporters has been recognized to play an important role in regulating their function as well as
transport activity and needs further clarification. Moreover, the role of systemic and humoral factors in
regulating enterocyte zinc uptake from the intestinal lumen and excretion via the basolateral exporter
ZnT-1 into the blood has to be comprehensively elucidated.

To tackle these challenges, the application of in vitro cellular intestinal models has exceptional
potential. As outlined in detail in this review, these models provide a standardized platform to not only
analyze zinc absorption and transport kinetics and bioavailability from in vitro digested food samples,
but also to elucidate the regulatory parameters of human zinc absorption and transport on a molecular
level, offering several advantages compared to other intestinal models. Prospective implementation of
these in vitro intestinal microenvironments could include analysis of diet-derived factors impacting
intestinal zinc uptake as well as the fast and cost-efficient screening of zinc bioavailability from
novel food products and zinc complexes. Consequentially, the role of amino acids and peptides in
luminal availability and subsequent absorption of the metal can be studied. Knowledge about the
bioavailability of zinc from complex food matrices could be included in nutrition surveys. Most of
these are currently only considering the total zinc content of the respective diet.

As discussed in detail in this review, the luminal and basolateral constituents as well as cellular
composition of in vitro cellular intestinal models are crucial for investigating zinc absorption and must
represent the in vivo human intestinal epithelium and its vicinity as close as possible. Still, there remain
important differences to the intestinal epithelium in vivo, as not all cell types present in the epithelium
are incorporated in the models, and the intestinal and blood fluid flow and peristaltic motions are not
considered. Importantly, it is more relevant to correlate the actual amount of transported metal per
absorption area than the net absorption in vitro and in vivo because there are considerable differences
of the ratios of liquid volume per absorption area. Hence, several factors and limitations have to be
considered when using in vitro intestinal models to study the intestinal zinc absorption, and should be
addressed during further development of improved in vitro models.

Taken together, investigating these future perspectives with in vitro cellular intestinal models
would not only enhance the current knowledge on intestinal zinc bioavailability and absorption as well
as on molecular regulatory parameters of its luminal uptake and transport into the blood circulation,
but also contribute to the overall understanding of enterocyte zinc homeostasis in addition to the
hitherto obtained results.
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2D two-dimensional
3D three-dimensional
λem emission wavelength
λex excitation wavelength
BRET bioluminescence resonance energy transfer
BSA bovine serum albumin
DGE German Society for Nutrition, ger. Deutsche Gesellschaft für Ernährung
DMEM Dulbecco’s Modified Eagles Medium
DMT-1 divalent metal transporter
EDTA ethylene-diamine-tetra-acetic acid
EFSA European Food Safety Authority
EHS Engelbreth-Holm-Swarm cells
FAAS flame atomic absorption spectrometry
FCS fetal calf serum
FLIM fluorescence lifetime imaging microscopy
FRET Förster resonance energy transfer
HD high density
HBSS Hanks’ Balanced Salt Solution
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HSA human serum albumin
ICP-MS inductively-coupled plasma mass spectrometry
ICP-OES inductively-coupled plasma optical emission spectrometry
IP inositolphosphate
Km half saturation constant
KHB Krebs-Henseleit buffer
LIM Lin-11, Isl-1, Mec-3
LMW low molecular weight
LSM laser scanning microscope
mRNA messenger ribonucleic acid
MEM minimum essential medium
MT metallothionein
MTF-1 metal regulatory transcription factor 1
n.a. not available
PBMC peripheral blood mononuclear cells
PBS phosphate buffered saline
PC polycarbonate
PE polyethylene
PES polyester
PET photo-induced electron transfer
qPCR quantitative real time polymerase chain reaction (PCR)
RING really interesting new gene
SLC solute carrier
TEER transepithelial electrical resistance
TJ tight junction
TPEN N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine
WHO World Health Organization
ZIP Zrt-, Irt-like protein
Zn zinc
ZnT zinc transporter
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